Perspectives in Ecology and Evolutionary Biology of Fungi

EEB 409—Perspectives in Ecology and Evolutionary Biology

Instructor: Dr. P. Brandon Matheny. Lab/Office: Hesler 332/334; tel. 865-974-8896; <u>pmatheny@utk.edu</u>

Meetings: Tues, Thur 9:40 am - 10:55 am; Hesler 427

Office hours: by appointment.

Blackboard site: https://blackboard.utk.edu/

Readings will be posted as PDFs on Blackboard; in addition, the following textbook will be used: Knisely, K. (2013) A student handbook for writing in biology. Fourth edn.

Scope: This course will introduce upper-division undergraduate students and beginning graduate students to ecology and evolutionary biology of fungi, revealed mostly through use of molecular techniques. Many fungi, and the ecological roles they serve, are often obscure due to their ephemeral nature, difficulty of detection, and convergent gross morphological similarities. Despite these limitations, advances in molecular biology have uncovered an unanticipated depth of diversity in fungi and permitted scientists to address research questions not possible until only recently. This seminar will provide an overview of the revolution in fungal evolution and ecology by examining the primary literature, most of it published recently with an occasional mixture of classic papers that have withstood the test of time.

Course Learning Objectives: (1) Read and interpret scientific texts, figures, and tables. (2) List the five big ideas in biology. (3) Identify biological scenarios that incorporate big ideas in biology. (4) Know distinguishing features of fungi. (5) Improve your writing.

Format, Expectations, and Grading: The course is organized around three major themes of biodiversity: taxonomic, genetic, and functional diversity. A few years ago the National Science Foundation announced a campaign to fund proposals that intersect these three topics and to spur research that integrates these disparate disciplines. The course will begin with several background lectures providing an introduction and background to fungal biology, fungal ecology, and methods of evolutionary analysis. When necessary, background material may also be presented by me before discussion of assigned readings. In total, approximately thirty papers from the primary literature will be assigned for reading and student-led discussions. This sounds like a lot (it is!), but because of the amount of reading, writing, and discussion required, there will be no exams other than the final, which will be a take-home exam. As a conciliatory note, most paired readings include a main research paper preceded by a short commentary paper or paired with a short *Science* or *Nature* paper.

A short quiz will be presented at the beginning of each class to which a reading has been assigned. This will ensure that students come to class having read and understood the material. Quiz questions may also serve as points of discussion.

Students will submit three papers that summarize and synthesize each major theme of the course (taxonomic, genetic, and functional diversity). These summaries and syntheses should be at least 1500 words in length and not more than 2000 words. Details about paper guidelines and expectations will be forthcoming.

Grades are based on quizzes, three papers, and the take-home final. Up to five points will be assigned for each quiz. A total of 25 quizzes will be given. The two lowest scores will be discarded. Thus, up to 115 quiz points are possible. Each paper will be worth 50 points for a total of 150 points. The take-home final exam, based on materials presented in lecture and topics presented in the papers, will constitute 75 points. Thus, 340 total points are possible. The final will be primarily a mixture of short answer and essay questions.

Note that EE409 is a designated 'writing-intensive' or communication through writing (WC) course and as such fulfills a general education requirement.

Field trip(s): If the weather is conducive, field trips will be planned to introduce students to fungi in the field. Excursions will likely be a half-day affair during the morning on non-home football weekends. Possible dates include Sep 13, Sep 20, Sep 27, Oct 18, Nov 1 and/or Nov 8.

Five big ideas in biology:

- (1) **Evolution**: Populations of organisms and their cellular components have changed over time through both selective and non-selective evolutionary processes.
- (2) **Structure and Function**: All living systems (organisms, ecosystems, etc.) are made of structural components whose arrangement determines the function of the systems.
- (3) **Information Flow and Storage**: Information (DNA, for example) and signals are used and exchanged within and among organisms to direct their functioning.
- (4) **Transformation of Energy and Matter**: All living things acquire, use, and release matter and energy for cellular / organismal functioning.
- (5) **Systems**: Living systems are interconnected, and they interact and influence each other on multiple levels.

Disability Statement

The Office of Disability Services (ODS) is committed to providing equal opportunities for students with disabilities at the University of Tennessee. Appropriate accommodations will be made to enable persons with disabilities to satisfy the General Education requirements. EEB409 is a WC or writing-intensive course. Students with documented disabilities should contact the Office of Disability Services for assistance with appropriate accommodations at (865) 974-6087 or *ods@tennessee.edu*.

No.	Date	Торіс		
01	Th Aug 21	Course organization		
		Lecture 1: Introduction to fungal biology		
02	Tu Aug 26	Lecture 2: Ecological roles of fungi / Molecular techniques and characters used		
	in fungal molecular ecology			
03	Th Aug 28	Lecture 3: Phylogeny reconstruction and tree thinking		
04	Tu Sep 2	Section I: Taxonomic diversity of fungi		
07	TTI 0 4	How many fungal species are known?		
05	Th Sep 4	Fungal community ecology: a hybrid beast with a molecular master		
06	Tu Sep 9	Global diversity and distribution of macrofungi		
07	J/ III Sep 11 How to know unknown rungi: the role of a neroarium D8 Tu Sep 16 Fungel ecology ectables fire (commentary)			
08	Tu Sep 16	- Fungal ecology calcules life (commentally) Spacios shundance distributions and righness estimations in fungal		
		- Species abundance distributions and from community acalogy		
09	Th Sep 18	- Scaling up: examining the macroecology of ectomycorrhizal fungi		
07	In Sep 10	(commentary)		
		- Towards global patterns in the diversity and community structure of		
		ectomycorrhizal fungi		
10	Tu Sep 23	Global diversity and distribution of arbuscular mycorrhizal fungi		
11	Th Sep 25	Evolutionary criteria outperform operational approaches in producing		
		ecologically relevant fungal species		
12	Tu Sep 30	Section II: Genetic diversity of fungi		
		Species and speciation in fungi		
13	Th Oct 2	- Eukaryotic microbes, species recognition and the geographic limits of species:		
		examples from the Kingdom fungi		
		- The fungus Armillaria bulbosa is among the largest and oldest living		
1.4	Tre Oat 7	organisms		
14	Tu Oct /	The actomycorrhized fungues Amanita phalloidae was introduced and is		
		expanding its range on the west coast of North America		
15	Th Oct 9	Frequent circumarctic and rare transequatorial dispersals in the lichenised agaric		
15	In Oct y	genus Lichenomphalia		
16	Tu Oct 14	Phylogeographic analyses of a boreal-temperate ectomycorrhizal		
		basidiomycete, Amanita muscaria, suggest forest refugia in Alaska during the		
		last glacial maximum		
	Th Oct 16	Fall Break – no class		
17	Tu Oct 21	The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems – a		
		key to understanding the ecology and functioning of the mycorrhizal symbiosis		
18	Th Oct 23	Evolutionary ecology of pungency in wild chilies		
19	Tu Oct 28	Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human		
20	T	history		
20	Th Oct 30	Section III: Functional diversity of fungi		
01	T. N. 4	Mycorrhizal fungi: their habitats and nutritional strategies		
21	Tu Nov 4	Nycorrnizal vs saprotrophic status of rungi: the isotopic evidence		
22	In NOV 6	becomposers in disguise: mycorrnizal fungi as regulators of soil C dynamics in		
		Review paper on genetic diversity in fungi DUF		
23	Tu Nov 11	Friend or foe? Evolutionary history of glycoside hydrolase family 32 gapes		
23		encoding for sucrolytic activity in fungi and its implications for plant-fungal		
		symbioses		
24	Th Nov 13	- Fungal secondary metabolite biosynthesis – a chemical defence strategy		
		against antangonistic animals?		

Class Schedule EEB409 (tentative and subject to change)

		- Interactions between saprotrophic basidiomycetes mycelia and mycophagous		
		soil fauna		
25	Tu Nov 18	The irreversible loss of a decomposition pathway and the single origin of an		
		ectomycorrhizal symbiosis		
26	Th Nov 20	The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31		
		fungal genomes		
27	Tu Nov 25	Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?		
	Th Nov 27	Thanksgiving 27-28 Nov – no class		
28 Tu Dec 2 Mushr		Mushrooms and society		
		California porcini: three new taxa, observations on their harvest, and the tragedy		
		of no commons		
		Hand out take-home exam		
	Th Dec 7	Research paper on functional diversity in fungi DUE		
	Tu Dec 9	Take home exam due by 10:00 am		

Grading scale EEB409, fall semester 2014

Percentage of total	Letter grade	Scale
points (600)		
94-100	А	4.0
91-93	A-	3.7
88-90	B+	3.3
84-87	В	3.0
81-83	B-	2.7
78-80	C+	2.3
74-77	С	2.0
71-73	C-	1.7
68-70	D+	1.3
64-67	D	1.0
61-63	D-	0.7
<61	F	0.0