Biometry 560

Instructor: Instructor: Jim Fordyce (4-2925) <u>jfordyce@utk.edu</u> Office: 540 Hesler Hall Office hours: Monday following class or by appointment MWF 11:15-12:05 (488 HBB)

TA: Zach Marion zmarion@utk.edu (office hours: TBD)

Communication: Blackboard. Supplemental reading and assignments will be posted there.

Text (Recommended): Quinn, G.P. & M.J. Keough 2009. Experimental Design and Data Analysis for Biologist, Cambridge

Others: Crawley, M.J. 2012. The R Book. Wiley Dalgaard, P. 2008. Introductory Statistics with R, Springer *

Maindonald, J. & Braun, W.J. 2006. Data Analysis and Graphics Using R, Cambridge Gelman & Hill 2007. Data Analysis using regression and multilevel/hierarchical models

Course Objectives: The use of statistics is ubiquitous in the fields of ecology and evolution. An understanding of statistics is not only important for the design of experiments and analysis of one's own data, but also for the ability to critically read the literature (including literature that you might be asked to review). It is important for scientists to understand what various statistical approaches are doing and exactly what hypotheses are being tested, rather than simply having blind faith in the All Mighty p < 0.05. The goal of this course is to introduce basic statistical approaches in a way that we might understand what question is being addressed. No course (certainly not this one) can cover the whole body of statistical approaches used by researchers – it would take years and, at the end, you would find yourself writing a really thick book. Undoubtedly, at some point, you will have a data set that does not fit the approaches we will be covering. Thus, one objective is for you to feel comfortable with the language of statistics so that you can use books or consultants without too much confusion. Another objective of the course is to encourage (strongly) carefully thinking about the design of a study – from idea, to question, to hypothesis, to experimental design, to analysis, to (finally) interpretation of analysis. In a perfect world (and we all want a perfect world) all these steps should be done before the first datum is collected. One should never collect data and then ask, "How should I analyze this?" We will cover basic parametric and some non-parametric approaches, examine multivariate analysis, and discuss likelihood, Bayesian, and permutation approaches. Ultimately, we want to understand how to use statistics as a tool to understand and advance our research. Have fun - stats are fun.

Assessment:

Exercises(6)	50% -	These will be given a week before they are due
Mid-term30% -	October	(middle – it's a take home)
Final	20% -	December 9 th (12:30-2:30)

The Mid-term and final will consist of analyses and description (including figures, etc. if necessary) of experimental data provided. Two documents, a pdf describing the analyses and your interpretation of the analyses (including figures) AND a document of annotated computer code should be emailed to me at <eebbiometry@gmail.com>.

Software:

We will be using the statistical programming language, R.

R is free at <u>http://www.r-project.org/</u>. R has become a standard tool in ecology and evolutionary biology (look through a recent issue of Evolution or Ecology and you'll notice R is commonly used). R also has great graphics abilities. We will like R.

Exercises will be assigned one week before they are due. They will largely consist of annotated computer code. The code should be emailed to me at <eebbiometry@gmail.com> by 11:15am the day they are due.

Tentative Schedule

August

August			
21	Introduction	What's the question?	
23	Data	Types of data / intro to JMP	
26	Description of data	Distributions	
28	Description of data	Distributions, summary statistics ****	
30	Description of data	Distributions, summary statistics	
Septembe	er		
2	LABORDAY		
4	Hypothesis testing & experimental design ****		
6	Hypothesis testing & experime	ental design	
9	Correlation	Relationship between two variables	
11	Correlation	Relationship between two variables	
13	Regression	Linear regression	
16	Regression	Linear regression *******	
18	Regression	Linear regression	
20	Regression	multiple regression	
23	Regression	multiple regression & model selection	
25	Comparing 2 groups	t-test	
27	ANOVA	One way	
30	ANOVA	Multiple comparison (planned vs. unplanned & corrections)	
0.4.4.4.4.4			
October		Multi factor, Dartitianing variance componente	
Z 1			
4		IDA Mixed models (Fixed vs. Bandom offects)	
0		Mixed models (Fixed vs. Random effects)	
9		Mixed models (Fixed vs. Random effects)	
11		Nixeu models	
14		Nested models	
10	No class	Mid term exam	
10			
21	ANOVA Belated complex	ANCOVA Deired t test	
23	Related samples	Palleu Lest	
20	Related samples		
20	Multivariate		
30	Multivariate	MANOVA	
Novembe	r		
1	Multivariate	MANOVA	
4	Multivariate	Discriminant Function Analysis	
6	Multivariate	Discriminant Function Analysis	
8	Multivariate	Discriminate function analysis	
11	Categorical data	odds ratio, Pearson's Chi-square, Fisher's exact test	
13	Categorical data	odds ratio, Pearson's Chi-square, Fisher's exact test	
15	Categorical data	odds ratio, Pearson's Chi-square, Fisher's exact test	
18	Ordination	PCA,NMDS and others	
20	Ordination	PCA,NMDS and others	
22	Ordination	PCA,NMDS and others	
25			
27	DISCUSSION		
30	Thanksgiving		
. .			
Decembe	r Discussion		
2	DISCUSSION		

9 Final (12:30-2:30)